78 research outputs found

    New Results on Passivity Analysis of Delayed Discrete-Time Stochastic Neural Networks

    Get PDF
    The problem of passivity analysis for a class of discrete-time stochastic neural networks (DSNNs) with time-varying interval delay is investigated. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs). The results are shown to be generalization of some previous results and are less conservative than the existing works. Meanwhile, the computational complexity of the obtained stability conditions is reduced because less variables are involved. Two numerical examples are given to show the effectiveness and the benefits of the proposed method

    EBVCR: A Energy Balanced Virtual Coordinate Routing in Wireless Sensor Networks

    Get PDF
    AbstractGeographic routing can provide efficient routing at a fixed overhead. However, the performance of geographic routing is impacted by physical voids, and localization errors. Accordingly, virtual coordinate systems (VCS) were proposed as an alternative approach that is resilient to localization errors and that naturally routes around physical voids. However, since VCS faces virtual anomalies,existing geographic routing can’t work to banlance energy efficiently. Moreover, there are no effective complementary routing algorithm that can be used to address energy balance.In this paper we present An Energy Balanced virtual coordinate Routing in Wireless Sensor Networks(EBVCR),which combines both distance- and direction-based strategies in a flexible manner, is Proposed to resolve energy balance of Geographic routing in VCS .Our simulation results show that the proposed algorithm outperforms the best existing solution, over a variety of network densities and scenarios

    Anti-phase synchronization and symmetry-breaking bifurcation of impulsively coupled oscillators.

    Get PDF
    This paper studies the synchronization in two mechanical oscillators coupled by impacts which can be considered as a class of state-dependent impulsively coupled oscillators. The two identical oscillators are harmonically excited in a counter phase, and the synchronous (anti-phase synchronization) and the asynchronous motions are considered. One- and two-parameter bifurcations of the system have been studied by varying the amplitude and the frequency of external excitation. Numerical simulations show that the system could exhibit complex phenomena, including symmetry and asymmetry periodic solutions, quasi-periodic solutions and chaotic solutions. In particular, the regimes in anti-phase synchronization are identified, and it is found that the symmetry-breaking bifurcation plays an important role in the transition from synchronous to asynchronous motion

    Molecular Characterization of a Debilitation-Associated Partitivirus Infecting the Pathogenic Fungus Aspergillus flavus

    Get PDF
    The opportunistic human pathogenic fungus Aspergillus flavus is known to be infected with mycoviruses. In this study, we report a novel mycovirus A. flavus partitivirus 1 (AfPV1) that was originally isolated from the abnormal colonial morphology isolate LD-3-8 of A. flavus. AfPV1 has spherical virus-like particles about 40 nm in diameter, and three double-stranded RNA (dsRNA) segments (dsRNA1, 2, and 3 with lengths of 1.7, 1.4, and 1.1 kbp, respectively) were packaged in the virions. dsRNA1, dsRNA2, and dsRNA3 each contained a single open reading frame and potentially encoded 62, 42, and 32 kDa proteins, respectively. The dsRNA1 encoded protein shows similarity to the RNA-dependent RNA polymerase (RdRp) of partitiviruses, and the dsRNA2 product has no significant similarity to any other capsid protein (CP) in the GenBank databases, beside some homology with the hypothetical “capsid” protein of a few partitiviruses. The dsRNA3 encodes a protein with no similarity to any protein in the GenBank database. SDS-PAGE and polypeptide mass fingerprint-mass spectrum (PMF-MS) analyses indicated that the CP of the AfPV1 was encoded by dsRNA2. Phylogenetic analysis showed that the AfPV1 and relative viruses were found in an unclassified group inside the Partitiviridae family. AfPV1 seems to result in debilitation symptoms, but had no significant effects to murine pathogenicity. These findings provide new insights into the partitiviruses taxonomy and the interactions between viruses and A. flavus

    Heightened expression of MICA enhances the cytotoxicity of NK cells or CD8+T cells to human corneal epithelium in vitro

    Get PDF
    BACKGROUND: Major-histocompatibility-complex class I-related chain A (MICA) antigens are the ligands of NKG2D, which is an activating or coactivating receptor expressed on human NK cells and CD8(+)T cells. We sought to determine whether MICA expression in human corneal epithelium (HCE) could affect the cytotoxicity mediated by NK cells or CD8(+)T cells. METHODS: Cell cultures of HCE were harvested from human donor eyes. Flow cytometric analysis and ELISA was performed to determine the levels of MICA expression on HCE. Then, HCE was transfected with a lentivirus vector expressing MICA and GFP. Flow cytometric analysis, RT-PCR, western blot and ELISA were performed to check the levels of MICA expression. For cytotoxicity testing, allogeneic NK cells and CD8(+)T cells were isolated from peripheral blood mononuclear cells of healthy volunteers by magnetic cell sorting. The cytolytic activity of NK cells and CD8(+)T cells was assessed against MICA-transfected HCE (NK cells: E:T ratio = 3:1; CD8(+)T cells: E:T ratio = 10:1) using the nonradioactive cytotoxicity detection kit lactate deshydrogenase. RESULTS: Surface expression of MICA on corneal epithelium was identified at a low level. A cell line of stable human MICA-transfected corneal epithelium was successfully established. Heightened expression of MICA on HCE was found to promote the cytotoxicity mediated by NK cells or CD8(+)T cells, which could be blocked by an anti-MICA antibody. CONCLUSION: MICA molecules may contribute to cytotoxic responses mediated by activated immune effector cells in corneal epithelium immunity

    Genome-Wide Identification, Sequence Variation, and Expression of the Glycerol-3-Phosphate Acyltransferase (GPAT) Gene Family in Gossypium

    Get PDF
    Cotton is an economically important crop grown for natural fiber and seed oil production. Cottonseed oil ranks third after soybean oil and colza oil in terms of edible oilseed tonnage worldwide. Glycerol-3-phosphate acyltransferase (GPAT) genes encode enzymes involved in triacylglycerol biosynthesis in plants. In the present study, 85 predicted GPAT genes were identified from the published genome data in Gossypium. Among them, 14, 16, 28, and 27 GPAT homologs were identified in G. raimondii, G. arboreum, G. hirsutum, and G. barbadense, respectively. Phylogenetic analysis revealed that a total of 108 GPAT genes from cotton, Arabidopsis and cacao could be classified into three groups. Furthermore, through comparison, the gene structure analyses indicated that GPAT genes from the same group were highly conserved between Arabidopsis and cotton. Segmental duplication could be the major driver for GPAT gene family expansion in the four cotton species above. Expression patterns of GhGPAT genes were diverse in different tissues. Most GhGPAT genes were induced or suppressed after salt or cold stress in Upland cotton. Eight GhGPAT genes were co-localized with oil and protein quantitative trait locus (QTL) regions. Thirty-two single nucleotide polymorphisms (SNPs) were detected from 12 GhGPAT genes, sixteen of which in nine GhGPAT genes were classified as synonymous, and sixteen SNPs in ten GhGPAT genes non-synonymous. Two SNP markers of the GhGPAT16 and GhGPAT26 genes were significantly correlated with cotton oil content in one of the three field tests. This study shed lights on the molecular evolutionary properties of GPAT genes in cotton, and provided reference for improvement of cotton response to abiotic stress and the genetic improvement of cotton oil content

    Genome-Scale Analysis of the WRI-Like Family in Gossypium and Functional Characterization of GhWRI1a Controlling Triacylglycerol Content

    Get PDF
    Cotton (Gossypium spp.) is the most important natural fiber crop and the source of cottonseed oil, a basic by-product after ginning. AtWRI1 and its orthologs in several other crop species have been previously used to increase triacylglycerols in seeds and vegetative tissues. In the present study, we identified 22, 17, 9, and 11 WRI-like genes in G. hirsutum, G. barbadense, G. arboreum, and G. raimondii, respectively. This gene family was divided into four subgroups, and a more WRI2-like subfamily was identified compared with dicotyledonous Arabidopsis. An analysis of chromosomal distributions revealed that the 22 GhWRI genes were distributed on eight At and eight Dt subgenome chromosomes. Moreover, GhWRI1a was highly expressed in ovules 20–35 days after anthesis and was selected for further functional analysis. Ectopic expression of GhWRI1a rescued the seed phenotype of a wri1-7 mutant and increased the oil content of Arabidopsis seeds. Our comprehensive genome-wide analysis of the cotton WRI-like gene family lays a solid foundation for further studies

    Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires

    Get PDF
    Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time, nanotubes or nanowires can be obtained. Tubular nanostructures can be obtained at short time, while nanowires take longer time to form. This formation mechanism is applicable to design and synthesize other metal nanostructures and even compound nanostuctures via template-based electrodeposition

    In vitro anti-angiogenic properties of LGD1069, a selective retinoid X-receptor agonist through down-regulating Runx2 expression on Human endothelial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>LGD1069 (Targretin<sup>®</sup>) is a selective retinoid X receptor (RXR) ligand, which is used in patients for cutaneous T-cell lymphoma. Our published study reported that LGD1069 inhibited tumor-induced angiogenesis in non-small cell lung cancer. In present study, we found that LGD1069 suppressed the proliferation, adhesion, invasion and migration of endothelial cells directly, and affected the expression of vegf and some matrix genes.</p> <p>Methods</p> <p>Human umbilical vein endothelial cells (HUVECs) were used for <it>in vitro </it>study. MTT assay and Sulforhodamine B assay were used for cell viability assay; the tube formation assay was used to investigate the effect of LGD1069 on angiogenesis <it>in vitro</it>. <it>In vitro </it>adhesion, migration and invasion of HUVEC cells were analyzed by Matrigel adhesion, migration and invasion assay. Gene expressions were measured by RT-PCR and Western blot analysis.</p> <p>Results</p> <p>Our data showed here that LGD1069 inhibited the activation of TGF-β/Smad pathway significantly. Furthermore, it was demonstrated that expression of Runx2 was suppressed pronouncedly during incubation with LGD1069. Runx2 is a DNA-binding transcription factor which plays a master role in tumor-induced angiogenesis and cancer cells metastasis by interaction with the TGF-β/Smad pathway of transcriptional modulators.</p> <p>Conclusions</p> <p>Our results suggested that LGD1069 may impair angiogenic and metastatic potential induced by tumor cells through suppressing expression of Runx2 directly on human endothelial cells, which may point out new pathway through which LGD1069 display anti-angiogenic properties, and provide new molecular evidence to support LGD1069 as a potent anti-metastatic agent in cancer therapy.</p
    • …
    corecore